Exercise
$\int\frac{\left(x^2+1\right)\left(3x-5\right)}{x^2}dx$
Step-by-step Solution
Learn how to solve problems step by step online. Find the integral int(((x^2+1)(3x-5))/(x^2))dx. Rewrite the integrand \frac{\left(x^2+1\right)\left(3x-5\right)}{x^2} in expanded form. Expand the integral \int\left(3x-5+\frac{3}{x}+\frac{-5}{x^2}\right)dx into 4 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int3xdx results in: \frac{3}{2}x^2. The integral \int-5dx results in: -5x.
Find the integral int(((x^2+1)(3x-5))/(x^2))dx
Final answer to the exercise
$\frac{3}{2}x^2-5x+3\ln\left|x\right|+\frac{5}{x}+C_0$