Exercise
$\int\frac{\left(x+2\right)}{x^2+4}dx$
Step-by-step Solution
Learn how to solve simplify trigonometric expressions problems step by step online. Find the integral int((x+2)/(x^2+4))dx. Expand the fraction \frac{x+2}{x^2+4} into 2 simpler fractions with common denominator x^2+4. Expand the integral \int\left(\frac{x}{x^2+4}+\frac{2}{x^2+4}\right)dx into 2 integrals using the sum rule for integrals, to then solve each integral separately. The integral \int\frac{x}{x^2+4}dx results in: -\ln\left(\frac{2}{\sqrt{x^2+4}}\right). The integral \int\frac{2}{x^2+4}dx results in: \arctan\left(\frac{x}{2}\right).
Find the integral int((x+2)/(x^2+4))dx
Final answer to the exercise
$\ln\left|\sqrt{x^2+4}\right|+\arctan\left(\frac{x}{2}\right)+C_1$