∫231x−1dx\int_2^3\frac{1}{\sqrt{x-1}}dx∫23x−11dx
∫01(ln(x)x)dx\int_0^1\left(\frac{ln\left(x\right)}{x}\right)dx∫01(xln(x))dx
∫01(x(4−x2)32)dx\int_0^1\left(\frac{x}{\left(4-x^2\right)^{\frac{3}{2}}}\right)dx∫01((4−x2)23x)dx
∫02(e−x2)dx\int_0^2\left(e^{-x^2}\right)dx∫02(e−x2)dx
∫0∞(1x2)dx\int_0^{\infty}\left(\frac{1}{x^2}\right)dx∫0∞(x21)dx
∫01(3x5)dx\int_0^1\left(\frac{3}{x^5}\right)dx∫01(x53)dx
∫1∞(1x2)dx\int_1^{\infty}\left(\frac{1}{x^2}\right)dx∫1∞(x21)dx
Given a function f(x) and the interval [a,b], the definite integral is equal to the area that is bounded by the graph of f(x), the x-axis and the vertical lines x=a and x=b
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!