Sign up to see the steps for this solution and much more.
Try other ways to solve this exercise
cotx(sin2x)=1 + cos2xcotx\left(sin2x\right)=1\:+\:cos2xcotx(sin2x)=1+cos2x
25 − 12: (− 3) − 2: (− 1) + 3. (− 2)25\:-\:12:\:\left(-\:3\right)\:-\:2:\:\left(-\:1\right)\:+\:3.\:\left(-\:2\right)25−12:(−3)−2:(−1)+3.(−2)
(2x+10)2( 2 x + 10 ) ^ { 2 }(2x+10)2
limx→−1(6x2+5x+1)\lim_{x\to-1}\left(6x^2+5x+1\right)x→−1lim(6x2+5x+1)
1352⋅125\frac{135}{2}\cdot\frac{12}{5}2135⋅512
a+2a−(3a+5)+7(2a−4)+8aa+2a-\left(3a+5\right)+7\left(2a-4\right)+8aa+2a−(3a+5)+7(2a−4)+8a
(8x2+4x+4)\left(8x^2+4x+4\right)(8x2+4x+4)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!