Exercise
$\int\cos^6\left(7x\right)\sin^8\left(7x\right)dx$
Step-by-step Solution
Final answer to the exercise
$\frac{-\sin\left(7x\right)^{7}\cos\left(7x\right)^{7}}{98}+\frac{\cos\left(7x\right)^{5}\sin\left(7x\right)}{672}+\frac{5\cos\left(7x\right)^{3}\sin\left(7x\right)}{2688}+\frac{5}{256}x+\frac{5}{3584}\sin\left(14x\right)+\frac{-\cos\left(7x\right)^{7}\sin\left(7x\right)}{896}+\frac{-\cos\left(7x\right)^{5}\sin\left(7x\right)}{768}-\frac{5}{24576}\sin\left(28x\right)-\frac{35}{6144}x-\frac{5}{3072}\sin\left(14x\right)-\frac{35}{3072}x-\frac{1}{336}\sin\left(7x\right)^{3}\cos\left(7x\right)^{7}+\frac{-\sin\left(7x\right)^{5}\cos\left(7x\right)^{7}}{168}+C_0$