$\left(7y^4+1\right)\left(7y^4-1\right)$
$\frac{-8x^5y^2+2x^4y^3}{4x^2y^2}$
$\int\left(7x+7\right)^{2.7}dx$
$\frac{2}{\text{sena}}=\frac{\text{tana}}{1+\text{seca}}-\frac{\text{tana}}{1-\text{seca}}$
$\int_0^t\left(t^2e^{-4t}\right)dt$
$\frac{\frac{\left(q+1\right)}{\left(q+3\right)}}{\frac{1}{q^7}}$
$2x-2=\left(x+7\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!