$t\cdot y'\:+\:2\cdot y\:=\:4\cdot t^2,\:y\left(1\right)\:=\:2.$
$\frac{d^4}{dx^4}\left(x.in\left(x\right)\right)$
$\frac{12n^3}{3\left(n^3\right)^2}$
$-\infty^5$
$\int_{-\frac{\pi}{18}}^{\frac{\pi}{24}}\left(sec^26y\right)dy$
$\left(\frac{\left(x^{-3}\right)^2\left(4\sqrt{w^3}\right)^2}{\left(w^{-5}\cdot w^2\right)\sqrt{x^7}}\right)^2$
$-2\cdot4+3$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!