$\lim_{x\to4}\left(x+\log\left(x+96\right)\right)$
$\lim_{n\to\infty}\:\frac{2^{n+2}+1}{1^n+1}$
$\lim_{x\to\infty}\left(\frac{k^2\cdot sin\left(\frac{k}{x}\right)}{x^2}\right)$
$\sin\:^{\left(4\right)}\theta\:+2\:sin\:^{\left(2\right)}\theta\:\:cos^{\left(2\right)}\:\theta\:+cos^{\left(4\right)}\theta\:=1$
$\frac{sin\left(x\right)}{1+cos\left(x\right)}\cdot\frac{1-cos\left(x\right)}{1-cos\left(x\right)}$
$\left(-4\right).\left(-6\right).\left(-3\right).\left(-5\right)$
$c^2+2c-63$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!