∫x5⋅cos(x2)dx\int x^5\cdot\cos\left(x^2\right)dx∫x5⋅cos(x2)dx
3x+25 <x−4\:\frac{3x+2}{5}\:<x-453x+2<x−4
6x4−17x3+24x2−34x+24 (3x−4)6x^4-17x^3+24x^2-34x+24\:\left(3x-4\right)6x4−17x3+24x2−34x+24(3x−4)
cot (x+45)=(cosx−senx)cosx+senxcot\:\left(x+45\right)=\frac{\left(cosx-senx\right)}{cosx+senx}cot(x+45)=cosx+senx(cosx−senx)
(y−3x)(y+3x)9y2\frac{\left(y-3x\right)\left(y+3x\right)}{9y^2}9y2(y−3x)(y+3x)
(xy−ab)4\left(xy-ab\right)^4(xy−ab)4
dydt=x2−2x+2\frac{dy}{dt}=x^2-2x+2dtdy=x2−2x+2
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!