$\frac{dy}{dx}-1=-1+e^{x+y}$
$\lim_{x\to+\infty}\left(-\frac{in\left(x^2+1\right)}{\sqrt{x}}\right)$
$\frac{\left(4x^4-1\right)^2}{16x^4}+1$
$x+\frac{4}{x}=1$
$\int\frac{5x^3+7x^2+x-1}{x^2+1}dx$
$x^3-3x+7\left(x^2+3\right)$
$30x+20y+30z$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!