$\sin\left(1-\sin^2\right)=\cos$
$\lim_{x\to\infty}\left(\frac{\sqrt{9x^3+17}}{x\sqrt{x+1}}\right)$
$\left(\frac{x^3+2x^2+1}{x^3}\right)$
$\frac{\left(a^3+b^3\right)}{\left(a+b\right)}$
$\int\frac{3x^2+x+3}{x^2\left(x^2+1\right)}dx$
$\log_n\left(x\right)=4\log_n\left(3\right)-\log_n\left(3\right)$
$x^2\frac{dy}{dx}=\sqrt{y}\left(3x+4\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!