Exercise
$\frac{x^6-b^6}{x^2-b^2}$
Step-by-step Solution
Learn how to solve factorization problems step by step online. Simplify the expression (x^6-b^6)/(x^2-b^2). Factor the sum or difference of cubes using the formula: a^3\pm b^3 = (a\pm b)(a^2\mp ab+b^2). Simplify \sqrt[3]{x^6} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 6 and n equals \frac{1}{3}. Simplify \sqrt[3]{b^6} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 6 and n equals \frac{1}{3}. Simplify \sqrt[3]{\left(x^6\right)^{2}} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 6 and n equals \frac{2}{3}.
Simplify the expression (x^6-b^6)/(x^2-b^2)
Final answer to the exercise
$\frac{\left(x^{2}+b^{2}\right)\left(x^{4}-x^{2}b^{2}+b^{4}\right)}{x^2-b^2}$