Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Write in simplest form
- Solve by quadratic formula (general formula)
- Find the derivative using the definition
- Simplify
- Find the integral
- Find the derivative
- Factor
- Factor by completing the square
- Find the roots
- Load more...
Divide $x^5$ by $x^2+1$
Learn how to solve polynomial long division problems step by step online.
$\begin{array}{l}\phantom{\phantom{;}x^{2}+1;}{\phantom{;}x^{3}\phantom{-;x^n}-x\phantom{;}\phantom{-;x^n}}\\\phantom{;}x^{2}+1\overline{\smash{)}\phantom{;}x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{\phantom{;}x^{2}+1;}\underline{-x^{5}\phantom{-;x^n}-x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{5}-x^{3};}-x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\\\phantom{\phantom{;}x^{2}+1-;x^n;}\underline{\phantom{;}x^{3}\phantom{-;x^n}+x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}x^{3}+x\phantom{;}-;x^n;}\phantom{;}x\phantom{;}\phantom{-;x^n}\\\end{array}$
Learn how to solve polynomial long division problems step by step online. Simplify the expression (x^5)/(x^2+1). Divide x^5 by x^2+1. Resulting polynomial.