2x2+6x−16=02x^2+6x-16=02x2+6x−16=0
−(−3)+{(−5)−[+8]+(−10)}-\left(-3\right)+\left\{\left(-5\right)-\left[+8\right]+\left(-10\right)\right\}−(−3)+{(−5)−[+8]+(−10)}
204−32u34u2\frac{20^4-32u^3}{4u^2}4u2204−32u3
log10(10(1+x2))=2x3\log_{10}\left(10^{\left(1+\frac{x}{2}\right)}\right)=\frac{2x}{3}log10(10(1+2x))=32x
(4b+5b2)2\left(4b+5b^2\right)^2(4b+5b2)2
∫2x−3x2−4x+3dx\int\frac{2x-3}{x^2-4x+3}dx∫x2−4x+32x−3dx
limx→−3(x2−4x−3x2−9)\lim_{x\to-3}\left(\frac{x^2-4x-3}{x^2-9}\right)x→−3lim(x2−9x2−4x−3)
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!