$\left(x^2+16\right)y'-xy=x$
$\lim_{x\to0}\left(\frac{ae^x-1}{x}\right)$
$\lim_{x\to-\infty}\frac{3x^4+x^2+1}{\sqrt{5}x^4+3}$
$\left(5x+3y\right)\left(3x-5y\right)$
$4^2.3$
$7\:below\:0$
$14x^2\left(18x^3+15y^3\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!