∫(x2−25)xdx\int\frac{\left(x^2-25\right)}{x}dx∫x(x2−25)dx
limx→0(x2ex+2tan2x)\lim_{x\to0}\left(\frac{x^2e^x+2}{tan^2x}\right)x→0lim(tan2xx2ex+2)
ln(x)dydx=xy\ln\left(x\right)\frac{dy}{dx}=\frac{x}{y}ln(x)dxdy=yx
40xy:−12x40xy:-12x40xy:−12x
ddx3x4y2+3x2=xy+3\frac{d}{dx}3x^4y^2+3x^2=xy+3dxd3x4y2+3x2=xy+3
4x2−7x+74x^2-7x+74x2−7x+7
4p2+5.5m+2.5p2−m+3m4p^2+5.5m+2.5p^2-m+3m4p2+5.5m+2.5p2−m+3m
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!