∫0∞ln(1+1x)dx\int_0^{\infty}ln\left(1+\frac{1}{\sqrt{x}}\right)dx∫0∞ln(1+x1)dx
(2x3−6x)2\left(2x^3-6x\right)^2(2x3−6x)2
5−3+2−3+45-3+2-3+45−3+2−3+4
−(y−3)(y+4)-\left(y-3\right)\left(y+4\right)−(y−3)(y+4)
−559.0−111.8-559.0-111.8−559.0−111.8
ycos(x)−cos(x)+dydx=0y\cos\left(x\right)-\cos\left(x\right)+\frac{dy}{dx}=0ycos(x)−cos(x)+dxdy=0
(x−2e1u)dy=−(u)dx\left(x-2e^{\frac{1}{u}}\right)dy=-\left(u\right)dx(x−2eu1)dy=−(u)dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!