Apply the trigonometric identity: 1−cos(θ)21-\cos\left(\theta \right)^21−cos(θ)2=sin(θ)2=\sin\left(\theta \right)^2=sin(θ)2
Try other ways to solve this exercise
−3x + 5(x + 2)\:-3x\:+\:5\left(x\:+\:2\right)−3x+5(x+2)
loga(9a2)−loga(16)\log_a\left(9a^2\right)-\log_a\left(16\right)loga(9a2)−loga(16)
y−3xy+3y2+yy-3xy+3y^2+yy−3xy+3y2+y
24vw3y2−30v6w924vw^3y^2-30v^6w^924vw3y2−30v6w9
x(1+3⋅x)2\frac{x}{\left(1+3\cdot x\right)^2}(1+3⋅x)2x
∫x−33dx\int\sqrt[3]{x-3}dx∫3x−3dx
7x3+2x3+13x37x^3+2x^3+\frac{1}{3}x^37x3+2x3+31x3
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!