$\left(x^7-a^4\right)\left(x^7+a^4\right)$
$\int_1^2\left(e^{x-3}\right)dx$
$\frac{d}{dx}\left(\frac{\cos\left(u\right)}{1-\cos\left(u\right)}\right)$
$\lim_{n\to infinity}\left(\frac{1-0.25e^{\frac{t}{n}}}{0.75e^{\frac{t}{n}}}\right)^n$
$\int\left(\frac{5}{f^{\frac{x}{3}}}\right)dx$
$-11x^2y+y'=x^2$
$\frac{dy}{dx}=\frac{\left(1-y\right)^4}{3}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!