$\int_{-4}^5\left(e^{5x}\right)dx$
$\lim_{x\to\infty}\left(1+\frac{2}{x}\right)^{-3x}$
$\cos\left(0\right)=\frac{1}{\sec\left(0\right)}$
$\:\int\frac{\left(x^3\right)}{\sqrt{4x^2-9}}dx$
$3\cdot25+y$
$\left(\sqrt{11}\sqrt{2}\right)^2$
$\frac{9x^4}{16}+\frac{1}{2}-\frac{1}{9x^4}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!