∫ x2xdx\int\:x^2\sqrt{x}dx∫x2xdx
dxdt=−xt−1\frac{dx}{dt}=-\frac{x}{t-1}dtdx=−t−1x
56⋅5−5⋅125⋅24⋅2−55^6\cdot5^{-5}\cdot125\cdot2^4\cdot2^{-5}56⋅5−5⋅125⋅24⋅2−5
∫ u−u2+4du\int\:\frac{u}{\sqrt{-u^2+4}}du∫−u2+4udu
4x2−12xy2+9y44x^2-12xy^2+9y^44x2−12xy2+9y4
sec2θ +secθ tanθ sec^2\theta\:+sec\theta\:\:tan\theta\:sec2θ+secθtanθ
5y2+10x+305y^2+10x+305y2+10x+30
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!