$\frac{\sin\left(6x\right)}{\sin\left(3x\right)}-\frac{\cos\left(6x\right)}{\cos\left(3x\right)}=\sec\left(3x\right)$
$\sqrt{2x+6}-4=0$
$\frac{x^6+2x^4+6x-9}{x^3+6}$
$\lim\:_{x\to\:0}\left(\frac{\left(e^{2x}-1\right)\left(ln\left(n+x^2\right)\right)}{\left(1-cos\left(3x\right)\right)^2}\right)$
$f\left(x\right)=\frac{\sqrt{4x}}{2}$
$4\cos^2\left(x\right)+8\cos\left(x\right)+4$
$\lim_{x\to4}\left(x^2-25\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!