$\lim_{x\to\infty}\left(\frac{2x^2+1}{6+x-x^2}\right)$
$-\frac{4}{5}+\cos^2\left(x\right)=1$
$\lim_{x\to\frac{\pi}{2}}\left(cos\left(x\right)sec\left(5x\right)\right)$
$3xy^2-3xy^2z-2xyz^2+xyz^2$
$5+x<-1$
$\frac{\sin^2\left(x\right)}{\sec\left(y\right)-1}$
$\int_t^{\infty}\frac{1}{22}\left(e^{-\frac{z}{22}}\right)dz$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!