ddx(x2+y2)=−xy\frac{d}{dx}\left(x^2+y^2\right)=-\frac{x}{y}dxd(x2+y2)=−yx
dydxx4y=y3x\frac{dy}{dx}x^{4y}=y^{3x}dxdyx4y=y3x
(3+8x)(3−8x)\left(3+8x\right)\left(3-8x\right)(3+8x)(3−8x)
(5x+−3x+8)+(4x−2x−11)\left(5x+-3x+8\right)+\left(4x-2x-11\right)(5x+−3x+8)+(4x−2x−11)
−x3+4x2−3x-x^3+4x^2-3x−x3+4x2−3x
(x318−1)5\left(\frac{x^3}{18}-1\right)^5(18x3−1)5
∫(4x3(x4+8)2)dx\int\left(\frac{4x^3}{\left(x^4+8\right)^2}\right)dx∫((x4+8)24x3)dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!