$\lim_{x\to\infty}p\left(1+\left(\frac{r}{n}\right)\right)^{nt}$
$\lim_{x\to0}\left(-\ln\left(\left|x\right|\right)\right)^{\sin\left(x\right)}$
$\left(4x^3+\:3y^4\:\right)\left(4x^3\:-\:3y^4\right)$
$2ux+2u-ux+u$
$-\frac{160}{+40}$
$\lim_{x\to\infty}\left(\frac{x^3+3x^2+2}{x^4+x^2+2}\right)$
$-4+\left(-2+1\right)+5-\left(3-1-2\right)+4+\left(1-2\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!