limx→∞ (0)x1+(0)x\lim_{x\to\infty}\:\frac{\left(0\right)^x}{1+\left(0\right)^x}x→∞lim1+(0)x(0)x
2x2+5x−6=02x^2+5x-6=02x2+5x−6=0
∫2∞(1x−1)dx\int_2^{\infty}\left(\frac{1}{x-1}\right)dx∫2∞(x−11)dx
y83yx3y24\frac{y^8}{3y}x\frac{3y^2}{4}3yy8x43y2
(a2+5)(x2−9)\left(a^2+5\right)\left(x^2-9\right)(a2+5)(x2−9)
x2−4x+12x^2-4x+1^2x2−4x+12
dydx=−2x2−5x+8−6y2−5y−6\frac{dy}{dx}=\frac{-2x^2-5x+8}{-6y^2-5y-6}dxdy=−6y2−5y−6−2x2−5x+8
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!