$\int\frac{\left(x-1\right)}{\sqrt{\left(x-1\right)^2-4}}dx$
$2x^2-16\ge0$
$2x^2-4x-8-4x^2+5x-13$
$x^2-15x+26$
$\lim_{x\to0}\left(x^2+x\right)\ln\left(x\right)$
$-1\left(-3\right)\left(4\right)$
$\frac{dy}{dx}=m\cdot y\left(x\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!