$2\cos^2\left(x\right)-1=\cos^2\left(x\right)-\sin^2\left(x\right)$
$\left(x^4+x^3+x^2-x-1\right)\left(2x\right)$
$\int\frac{x^3+2x-1}{\left(x^2-4x+8\right)^3}dx$
$\lim_{x\to0}\left(\frac{sin\left(\sqrt{x^4+x^2}\right)}{\sqrt{x^2+9}}\right)$
$1^4-1^3-1^2+1-1$
$\int\:\frac{7x^6}{\left(x^7+1\right)^2}dx$
$1-8t^5+16t^{10}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!