$\sqrt{7x^2}\cdot\sqrt{63x}$
$\lim_{x\to\infty}\left(\frac{n+8}{n^2+11n+24}\right)$
$73+12\cdot\left(54-24\right)-7\cdot\left(25-26\right)\cdot\left(13-5\cdot3+3\right)-38$
$\lim_{x\to0}\:-2x\left(lnx\right)$
$\frac{x}{2}+x-1\ge2x+3$
$\lim_{x\to0}\left(\frac{\cos4\left(x\right)-\cos^22\left(x\right)}{x}\right)$
$\frac{3u^3v^4}{4u^2v^{-2}}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!