$x\:y\:dy=\left(y+1\right)\left(1-x\right)dx$
$\sqrt{5\cdot\square-1}=7$
$\lim_{x\to4}\left(\frac{x^2-16}{3x^3+x-24}\right)$
$\cos\left(x\right)\sec\left(2x\right)=\frac{\sec\left(x\right)}{1-\tan^2\left(x\right)}$
$\int\left(\frac{x^2-1}{\sqrt[3]{\left(x^3-3x+16\right)}}\right)dx$
$2x^3-3y^2+2,\:x=1,\:y=-1$
$\left(\frac{1}{3}x^3y-\frac{3}{2}m^2n\right)^2-\left(\frac{4}{9}x^3y+5m^3n\right)^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!