$\lim_{x\to\infty}\left(\sqrt{x^2+2x}-\sqrt{x^2+x}\right)$
$\left(7x^6y^4\right)^2$
$\frac{dy}{dx}=\frac{\left(1+5y\right)}{1+x}$
$\left(64f^6g^{-3}\right)^{\frac{1}{1}}\:x\:\left(81f^{-4}g^8\right)^{\frac{1}{2}}$
$\lim_{x\to0}\left(\frac{\tan\left(2x\right)}{\tan\left(5x\right)}\right)$
$9x^2+7y=6$
$169-b^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!