$\lim_{x\to\infty}\frac{2x^4-7}{\sqrt{4x^8+7x^5}}$
$\left(y-2\right)\left(y+12\right)$
$\left(2-1\right)\left(8-2\right)$
$6x^2+18x+12$
$\int\left(\frac{x-1}{x^3-9x^2}\right)dx$
$2x\:2-5x-12=0\:$
$\frac{\left(2x^{-1}\right)^{-3}}{\left(x^4y^{-1}\right)\left(x^{-1}y^2\right)}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!