$\frac{1}{\tan^2x}=\sec^2x$
$\left(\frac{x^2}{y^2}\right)^{-1}$
$\int\left(\frac{x}{\sqrt{x+10}}\right)dx$
$\left(x^2y^2+z^2\right)\left(x^2y^2-z^2\right)$
$5\left(4\pi\right)$
$\left(7x^2+3y^3\right)\left(7x^2-3y^3\right)$
$x\left(x+3\right)\left(x+6\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!