$\left(5p\right)^2$
$\lim_{x\to0}\frac{\sin\left(x^2\right)}{x^3}$
$\int\left(\frac{2\cos\left(x\right)}{\sqrt{4-4\sin^2\left(x\right)}}\right)dx$
$\lim_{x\to0}\left(\frac{\sqrt[3]{1+x^2}-\sqrt[4]{1-2x}}{x+x^3}\right)$
$\left(x+y\left(x-y\right)\right)$
$\frac{x-3}{2x+10}+2x-12=\frac{x^2+3x-18}{2x+10}$
$\frac{dy}{dx}=\frac{\left(y+x+\frac{y^2}{x}\right)}{x}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!