$\frac{x^5+3x^4-9x^3+x^2+7x-3}{x+1}$
$\lim_{x\to\infty}\left(\frac{\ln\left(x^2+3x+4\right)-\ln\left(x^2-2x+5\right)}{x^2}\right)$
$\int98xe^{-7x}dx$
$\left(2t+1\right)\left(t-2\right)$
$4a^2-\:81y^4$
$4a^3-5a\:\cdot2a-1$
$\int\sqrt{25-4x^2}\frac{5}{2}dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!