$\lim_{x\to-\infty}\frac{1-5x^2}{3+4x+x^5}$
$f\left(x\right)=3x^3-9x$
$\frac{x^2-8}{x+3}$
$\lim_{\theta\to\frac{\pi}{4}\frac{\cos\left(2\theta\right)}{\sqrt{2}\cos\left(\theta\right)-1}}$
$\left(3x^2+7y^3\right)\left(9x^4-21x^2y^3+49y^6\right)$
$\frac{4x^3-2x^2-14x-2}{2x+3}$
$1-7+2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!