$\lim_{x\to0}\left(\frac{tan\cdot x-x}{x^3}\right)$
$\left(9x-1\right)y'+9y=0$
$5-ab+3ab$
$\lim_{x\to\infty}\left(6\:+\:x^5\right)\frac{1}{\ln\left(5x^3+1\right)}$
$9\left(x+1\right)-3x\left(x+1\right)^2$
$\frac{d}{dx}y==2x^{\frac{1}{4}}+x^{\frac{6}{5}}$
$\frac{d}{dx}\left(4x^3\left(x^2+4\right)\left(x+4\right)^2tan^{-1}\left(2x\right)\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!