∫t5(t2+4)2dx\int\frac{t^5}{\left(t^2+4\right)^2}dx∫(t2+4)2t5dx
∫2x4−5x54xdx\int\frac{2x^4-5\sqrt[5]{x}}{4x}dx∫4x2x4−55xdx
tan2x−sec2x=−1tan^2x-sec^2x=-1tan2x−sec2x=−1
sin(a+x)cos(a)cos(x)\frac{\sin\left(a+x\right)}{cos\left(a\right)cos\left(x\right)}cos(a)cos(x)sin(a+x)
e2x−5ex+6=0e^{2x}-5e^x+6=0e2x−5ex+6=0
(x−34)(x)\left(x-\frac{3}{4}\right)\left(x\right)(x−43)(x)
∫x+2x2+4x+13dx\int\frac{x+2}{x^2+4x+13}dx∫x2+4x+13x+2dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!