Multiply the single term d5ydx5\frac{d^5y}{dx^5}dx5d5y by each term of the polynomial (3x6−3x3+6x)\left(3x^6-3x^3+6x\right)(3x6−3x3+6x)
Try other ways to solve this exercise
limx→∞((x2−2x+1))\lim_{x\to\infty}\left(\left(x^{2}-2x+1\right)\right)x→∞lim((x2−2x+1))
∫3x−8x2−x−12dx\int\frac{3x-8}{x^2-x-12}dx∫x2−x−123x−8dx
(x + 30)3\left(x\:+\:30\right)^3(x+30)3
(1−sinx)(1+sinx)cos3x\frac{\left(1-sinx\right)\left(1+sinx\right)}{cos^3x}cos3x(1−sinx)(1+sinx)
(3a3−4b5−c4)3\left(3a^3-4b^5-c^4\right)^3(3a3−4b5−c4)3
x2−6x+2=0x^2-6x+2=0x2−6x+2=0
csc2x−1tanx=cot3x\frac{\csc^{2}x-1}{\tan x}=\cot^{3}xtanxcsc2x−1=cot3x
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!