Apply the property of the quotient of two powers with the same exponent, inversely: $\frac{a^m}{b^m}=\left(\frac{a}{b}\right)^m$, where $m$ equals $2$
Divide both sides of the equation by $\left(\frac{d}{dx}\right)^2$
The power of a quotient is equal to the quotient of the power of the numerator and denominator: $\displaystyle\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}$
Divide fractions $\frac{x}{\frac{d^2}{dx^2}}$ with Keep, Change, Flip: $a\div \frac{b}{c}=\frac{a}{1}\div\frac{b}{c}=\frac{a}{1}\times\frac{c}{b}=\frac{a\cdot c}{b}$
Try other ways to solve this exercise
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!