−228−12\frac{-228}{-12}−12−228
limx→0(1−cosx(ex−1)2)\lim_{x\to0}\left(\frac{1-cosx}{\left(e^x-1\right)^2}\right)x→0lim((ex−1)21−cosx)
(1−cos(x))(1+cos(x))sin(x)=sin(x)\frac{\left(1-\cos\left(x\right)\right)\left(1+\cos\left(x\right)\right)}{\sin\left(x\right)}=\sin\left(x\right)sin(x)(1−cos(x))(1+cos(x))=sin(x)
x+2x+1<3\frac{x+2}{x+1}<3x+1x+2<3
8⋅11838\cdot11838⋅1183
log(x+5)−log(2x+1)=log(3x−1)\log\left(x+5\right)-\log\left(2x+1\right)=\log\left(\frac{3}{x-1}\right)log(x+5)−log(2x+1)=log(x−13)
∫ex2cos5xdx\int e^{\frac{x}{2}}cos5xdx∫e2xcos5xdx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!