Sign up to see the steps for this solution and much more.
Try other ways to solve this exercise
limx→−2 x2−4\lim_{x\to-2}\:\:x^2-4x→−2limx2−4
−150+75−58−30-150+75-58-30−150+75−58−30
x18−144x^{18}-144x18−144
5x3−2x+1x+1\frac{5x^3-2x+1}{x+1}x+15x3−2x+1
limx→∞((x)x(x+1)x)\lim_{x\to\infty}\left(\frac{\left(x\right)^x}{\left(x+1\right)^x}\right)x→∞lim((x+1)x(x)x)
limx→0(x2⋅cot(2x)sin(3x))\lim_{x\to0}\left(\frac{x^2\cdot cot\left(2x\right)}{sin\left(3x\right)}\right)x→0lim(sin(3x)x2⋅cot(2x))
x2+6x+64x^2+6x+64x2+6x+64
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!