Solving:
cot ( x ) ( cos ( x ) + tan ( x ) sin ( x ) ) cot ( x ) ( cos ( x ) + sin ( x ) tan ( x ) ) \frac{\cot\left(x\right)\left(\cos\left(x\right)+\tan\left(x\right)\sin\left(x\right)\right)}{\cot\left(x\right)\left(\cos\left(x\right)+\sin\left(x\right)\tan\left(x\right)\right)} c o t ( x ) ( c o s ( x ) + s i n ( x ) t a n ( x ) ) c o t ( x ) ( c o s ( x ) + t a n ( x ) s i n ( x ) )
f(x)=(cot(x)(cos(x)+tan(x)sin(x)))/(cot(x)(cos(x)+sin(x)tan(x))) −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 −3 -2.5 −2 -1.5 −1 -0.5 0 0.5 1 1.5 2 2.5 3 x y
Exercise
c o t ( c o s + t a n ⋅ s e n ) c o t ( c o s + s e n ⋅ t a n ) \frac{cot\left(cos+tan\cdot sen\right)}{cot\left(cos+sen\cdot tan\right)} co t ( cos + se n ⋅ t an ) co t ( cos + t an ⋅ se n )
Step-by-step Solution
1
Simplify the fraction cot ( x ) ( cos ( x ) + tan ( x ) sin ( x ) ) cot ( x ) ( cos ( x ) + sin ( x ) tan ( x ) ) \frac{\cot\left(x\right)\left(\cos\left(x\right)+\tan\left(x\right)\sin\left(x\right)\right)}{\cot\left(x\right)\left(\cos\left(x\right)+\sin\left(x\right)\tan\left(x\right)\right)} c o t ( x ) ( c o s ( x ) + s i n ( x ) t a n ( x ) ) c o t ( x ) ( c o s ( x ) + t a n ( x ) s i n ( x ) ) by cot ( x ) ( cos ( x ) + tan ( x ) sin ( x ) ) \cot\left(x\right)\left(\cos\left(x\right)+\tan\left(x\right)\sin\left(x\right)\right) cot ( x ) ( cos ( x ) + tan ( x ) sin ( x ) )
Final answer to the exercise