$\int_1^{\infty}\:\frac{7x}{8x-7}dx$
$\frac{dy}{dx}\left(sin\:\pi x\:+\:cos\:\pi y\right)^9\:=\:18$
$1+e^{-3x}y'=0$
$\left(-2\right)\cdot\left(+7\right)$
$sec^2x\:+\:csc^2x\:=\:\frac{1}{sen^2x\:\cdot\:cos^2x}\:$
$\lim_{z\to a}\left(\frac{\frac{z^2}{\left|z\right|^2}-\frac{a^2}{\left|a\right|^2}}{z-a}\right)$
$23+45+78+12+8$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!