$cos\left(-t\right)=\cos\left(t\right)$
$\lim_{n\to\infty}\left(\frac{3^{n+2}}{\pi^n}\right)$
$\lim_{x\to\pi}\frac{\sin\left(x\right)}{x\cdot\left(x-\pi\right)}$
$\lim_{n\to\infty}\left(n^{\left(\frac{1}{n}\right)}\right)$
$6m^3\cdot3m$
$4a\:^{16}+4a^8b+b^2$
$\frac{5\left(x-3\right)}{3\:}<\frac{3\left(6-2x\right)}{2}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!