$\left(-\:x\:4\:+\:x\:5\:-\:5x\:+\:3\right)\::\:\left(x\:+\:1\right)\:$
$\int_5^{\infty}\left(\frac{1}{\sqrt{x^2-25}}\right)dx$
$f\left(x\right)=\sqrt{\frac{x^4+lnx}{e^x\:cos^3\:x}}$
$\sqrt[4]{32x^4y^{10}}$
$\int8x\tan x^2dx$
$-2d\left(-2d^2+5d\right)$
$\tan\left(1+\cos\left(2x\right)\right)=\sin\left(2x\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!