$\int\sec^2\left(3x-1\right)dx$
$\int_0^77.2e^{-.016x}dx$
$\left(3x^4-6y^3-9z^2\right)^2$
$\int\frac{\left(7-\ln\left(x+2\right)^3\right)}{x+2}dx$
$2x^2-6x+3x+4x$
$\frac{1}{4}\left(\frac{3}{5}\left(2x+3\right)^{\frac{5}{3}}-\frac{9}{2}\left(2x+3\right)^{\frac{2}{3}}\right);\:x=1;\:y=0$
$\lim_{x\to\infty}\left(\frac{4ln\left(x\right)+\sqrt{x}}{\sqrt{x}-ln\left(2x\right)}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!