$\lim_{x\to+\infty}\left\{\left(x+1\right)-\sqrt{x^2+2x+3}\right\}$
$\int\:x\sqrt{x^2-9}dx$
$-2c\:-\:\left(3c\:-\:5\right)\:+\:c\:=\:-11$
$2.548\cdot\sin\left(x\right)\cdot\cos\left(x\right)=\cos\left(x\right)^2$
$\int x\cos\left(x^2\right)\sin^4\left(x^2\right)dx$
$-3\left(-2\right)\left(-2\right)$
$\sqrt{121}+\frac{7}{3}x+17x+\left(2x\right)^2+15x+14+\left(x-7\right)+12-5x$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!