$\left(x+5\right)\left(x-4\right)>x^2+2$
$-2x^6+4x^5+114x^4+108x^3$
$-x^2-5x+7=0$
$\left(x-60\right)\cdot\left(5\left(y-x\right)\right)+\left(y-70\right)\cdot\left(5\left(x-2y\right)+500\right)$
$\int_1^{\infty}\left(\frac{1}{x^2\sqrt{1+x^2}}\right)dx$
$\frac{x+1}{x-2}+2\ge\:\:0$
$\frac{1-n^5}{1-n}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!