$\lim_{x\to\frac{\pi}{2}}\left(\frac{\ln\sin\left(x\right)}{\left(\pi\:-2x\right)^3}\right)$
$\lim_{x\to\infty}\left(\left(\sqrt{x-3}-\sqrt{x}\right)\right)$
$\left(\sqrt[3]{x}+1\right)-\left(\sqrt[3]{x+y}+1\right)$
$5\cdot3-2+\left(24-\left(\frac{12}{-3}+6\right)\right)-\left(-11\right)$
$2\sin\left(x\right)^2-1=\sin\left(x\right)^2-\cos\left(x\right)^2$
$1-\sin\left(x\right)=1-\sin\left(x\right)^2$
$\frac{2^7}{2^4}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!